وثائق سرية تكشف تورط البوليساريو في حرب سوريا بتنسيق إيراني جزائري    الجهات تبصِم "سيام 2025" .. منتجات مجالية تعكس تنوّع الفلاحة المغربية    تصفية حسابات للسيطرة على "موانئ المخدرات" بالناظور    من فرانكفورت إلى عكاشة .. نهاية مفاجئة لمحمد بودريقة    أخنوش يمثل جلالة الملك في جنازة البابا فرانسوا    دول الساحل تعلن دعمها الكامل للمغرب وتثمن مبادرة "الرباط – الأطلسي" الاستراتيجية    مجلس جهة طنجة يشارك في المعرض الدولي للفلاحة لتسليط الضوء على تحديات الماء والتنمية    المفتش العام للقوات المسلحة الملكية يقوم بزيارة عمل إلى إثيوبيا    جريمة مكتملة الأركان قرب واد مرتيل أبطالها منتخبون    مؤتمر "بيجيدي".. غياب شخصيات وازنة وسط حضور "طيف بنكيران"    جريمة قتل جديدة في ابن أحمد    طنجة تحتضن النسخة الحادية عشرة من الدوري الدولي "مولاي الحسن" بمشاركة أندية مغربية وإسبانية    الشيبي يسهم في تأهل بيراميدز    أخنوش يصل إلى روما لتمثيل جلالة الملك في مراسم جنازة البابا فرانسوا    هيئة: وقفات بعدد من المدن المغربية تضامنا مع غزة وتنديدا بالإبادة الجماعية    مرسوم حكومي جديد يُحوّل "منطقة التصدير الحرة طنجة تيك" إلى "منطقة التسريع الصناعي" ويوسّع نطاقها الجغرافي    وليد الركراكي: نهجنا التواصل وعرض مشاريعنا على اللاعبين مزدوجي الجنسية... نحترم قراراتهم    المفتش العام للقوات المسلحة الملكية يقوم بزيارة عمل إلى إثيوبيا    أخنوش يصل إلى روما لتمثيل جلالة الملك في مراسم جنازة البابا فرانسوا    بسبب التحكيم.. توتر جديد بين ريال مدريد ورابطة الليغا قبل نهائي كأس الملك    نشرة إنذارية: زخات رعدية مصحوبة بتساقط للبرد وبهبات رياح مرتقبة الجمعة بعدد من مناطق المملكة    قطار التعاون ينطلق بسرعة فائقة بين الرباط وباريس: ماكرون يحتفي بثمرة الشراكة مع المغرب    الأخضر ينهي تداولات بورصة الدار البيضاء    العالم والخبير في علم المناعة منصف السلاوي يقدم بالرباط سيرته الذاتية "الأفق المفتوح.. مسار حياة"    تقرير يكشف عن نقص في دعم متضرري زلزال الحوز: 16% لم يحصلوا على المساعدة    عناصر بجبهة البوليساريو يسلمون أنفسهم طواعية للجيش المغربي    بودريقة يمثل أمام قاضي التحقيق .. وهذه لائحة التهم    إسكوبار الصحراء.. الناصري يلتمس من المحكمة مواجهته بالفنانة لطيفة رأفت    متدخلون: الفن والإبداع آخر حصن أمام انهيار الإنسانية في زمن الذكاء الاصطناعي والحروب    مصل يقتل ب40 طعنة على يد آخر قبيل صلاة الجمعة بفرنسا    افتتاح مركز لتدريب القوات الخاصة بجماعة القصر الصغير بتعاون مغربي أمريكي    إحصاء الخدمة العسكرية ينطلق وأبناء الجالية مدعوون للتسجيل    مذكرة السبت والأحد 26/27 أبريل    ضابط شرطة يطلق رصاصا تحذيريا لإيقاف مروج مخدرات حرض كلابا شرسة ضد عناصر الأمن بجرادة    مهرجان "كوميديا بلانكا" يعود في نسخته الثانية بالدار البيضاء    "أمنستي" تدين تصاعد القمع بالجزائر    أرباح اتصالات المغرب تتراجع 5.9% خلال الربع الأول من 2025    أبرزها "كلاسيكو" بين الجيش والوداد.. العصبة تكشف عن برنامج الجولة 28    طنجة.. ندوة تنزيل تصاميم التهيئة تدعو لتقوية دور الجماعات وتقدم 15 توصية لتجاوز التعثرات    على حمار أعْرَج يزُفّون ثقافتنا في هودج !    المجلس الوطني لحقوق الإنسان يناقش "الحق في المدينة" وتحولات العمران    الإعلان عن صفقة ب 11.3 مليار لتأهيل مطار الناظور- العروي    السايح مدرب منتخب "الفوتسال" للسيدات: "هدفنا هو التتويج بلقب "الكان" وأكدنا بأننا جاهزين لجميع السيناريوهات"    كاتبة الدولة الدريوش تؤكد من أبيدجان إلتزام المملكة المغربية الراسخ بدعم التعاون الإفريقي في مجال الصيد البحري    توقعات أحوال الطقس اليوم الجمعة    الملك يقيم مأدبة عشاء على شرف المدعوين والمشاركين في الدورة ال 17 للملتقى الدولي للفلاحة بالمغرب    المديرة العامة لصندوق النقد الدولي: المغرب نموذج للثقة الدولية والاستقرار الاقتصادي    "الإيسيسكو" تقدم الدبلوماسية الحضارية كمفهوم جديد في معرض الكتاب    أكاديمية المملكة المغربية تسلّم شارات أربعة أعضاء جدد دوليّين    الرباط …توقيع ديوان مدن الأحلام للشاعر بوشعيب خلدون بالمعرض الدولي النشر والكتاب    كردية أشجع من دول عربية 3من3    دراسة: النوم المبكر يعزز القدرات العقلية والإدراكية للمراهقين    إصابة الحوامل بفقر الدم قد ترفع خطر إصابة الأجنة بأمراض القلب    الحل في الفاكهة الصفراء.. دراسة توصي بالموز لمواجهة ارتفاع الضغط    المغرب يعزز منظومته الصحية للحفاظ على معدلات تغطية تلقيحية عالية    وداعًا الأستاذ محمد الأشرافي إلى الأبد    قصة الخطاب القرآني    المجلس العلمي للناظور يواصل دورات تأطير حجاج الإقليم    







شكرا على الإبلاغ!
سيتم حجب هذه الصورة تلقائيا عندما يتم الإبلاغ عنها من طرف عدة أشخاص.



ما قبل "فيثاغورس" ومابعد "فيرما" ..
نشر في هسبريس يوم 16 - 08 - 2016


قصة عايشت جميع مراحل الفكر الرياضي
مقدمة :
ربما تكون الصدفة وحدها هي التي قادت الى اكتشاف ما دَوّنَه (1601-1665) Pierre de Fermat رجل القانون الفرنسي (Toulouse) سنة 1637، على هامش إحدى صفحات كتاب للرياضيات مُدَوَّن باللاثينية Les Arithmétiques ، التي كان يتحدث فيها مؤلفه Diophante (207 - 291) عن كيفية تحديد أطوال صحيحة طبيعية لمثلث قائم الزاوية، أي كيفية إيجاد حلول صحيحة طبيعية لمعادلة Pythagore(-569, -494) المشهورة x2+ y2 = z2 ، حيث كتب Fermat ما يلي: "المكعب ليس بجموع مكعبين، قوة رابعة ليست مجموع قوتين رابعتين، وبشكل عام كل قوة أكبر من اثنين ليست مجموع قوتين مماثلتين لها. لقد عثرت على برهان رائع لهذه المبرهنة، إلا أن كتابته غير ممكنة حيث أن هذا الهامش ضيق جدا ولا يسمح بذلك ". من هنا يتبين أن Fermat كان منشغلا بمحاولة تعميم معادلة Pythagore الى الدرجات الأخرى (xn+ yn = zn ; n2 ) وصرح في نفس الوقت أن هذه المعادلات الناتجة عن التعميم لا تقبل أي حلول صحيحة غير منعدمة ، عكس معادلة Pythagore .
لقد شكل هذا الحدث لحظة فارقة في تاريخ الرياضيات. من جهة فإنه يعتبرنقطة تحول بالنسبة لمبرهنة فيثاغورس التي ستعرف تطورا جديدا وغير مسبوق، بعد كل التطورات التي عرفتها منذ حضارة ما بين النهرين الى الحضارة المصرية ثم الإغريقية ، ومن جهة أخرى فإن هذا الحدث خلق حالة اسْتِنْفَاروحَيْرَة شديدة في صفوف الرياضيين بمستوياتهم المختلفة، وذلك لفشلهم في إيجاد برهان يثبت مبرهنة Fermat أو مثال مضاد يَدْحَضُها، ولم تنتهي هذه الأزمة إلا سنة 1995 مع تقديم البرهان النهائي لمبرهنة Fermat ، باستعمال وسائل العصر المتطورة جدا ( الكومبيوتر)، من طرف الرياضي الأنجليزي Andrew Wiles (1953- ) .
ما قبل فيثاغورس :
تتعلق مبرهنة Pythagore أساسا بالمثلث القائم الزاوية، في بعدها الهندسي " في كل مثلث قائم الزاوية، مربع الوتر يساوي مجموع مربعي الضلعين المُكَوِّنين للزاوية القائمة والعكس صحيح " ، أما بُعْدُهَا الجبري فيظهر في اعتبار المعادلة x2+ y2 = z2 والبحث عن حلول صحيحة أو جدرية لها، وهذه مسألة جد عادية في زمان Pythagore أو قبله لأن الأعداد اللاجدرية لم تكن معروفة آنذاك، وربما استمر الوضع هكذا الى عهد Diophante (207 - 291) الاسكندراني الذي خصص للمعادلات ذات الصيغة الحدودية التي معاملاتها أعداد صحيحة وحلولها المطلوبة أعداد صحيحة طبيعية أو كسرية، حيزا هاما في كتابه Les Arithmétiques حتى سميت باسمه Equations de Diophante.
الحقيقة أن مبرهنة فيثاغورس التي لا زال معهد La Columbia Institut يحافظ على اللوحة الطينية التي كتبت عليها، كانت معروفة في حالات خاصة لدى الصينيين والبابليين 1000 عام قبل فيثاغورس ، وكان المصريون يعرفون المبرهنة في أبسط حالاتها، حيث كانوا يستعملون حبلا به 13 عقدة وبمجرد تكوين مثلث طول أضلاعه على التوالي 3 ، 4 ، 5 بواسطة هذا الحبل يحصلون على مثلث قائم الزاوية وبالتالي على الزاوية القائمة. وقد استعملت فكرة الحبل هاته بعد ذلك من طرف عمال البناء للتأكد من أن الحائط عموديا . وكل ما قام به الفيثاغوريون هو تعميم الخاصية على جميع المثلثات القائمة الزاوية .
بين فيثاغورس و فيرما :
أول برهان معروف لمبرهنة فيثاغورس جاء ضمن كتاب "Les Eléments" لأقليدس الأسكندراني Euclide d'Alexandrie (-320 ; -260) أي بعد أكثر من قرنين على اكتشافها من طرف المدرسة الفيثاغورية، مما يُبْعِد احتمال أن يكون هذا البرهان من ابتكار هذه المدرسة .
من جهة أخرى فقد لعب كتاب Les Arithmétiques للرياضي Diophante (207 - 291) دورا هاما في انطلاق مغامرات فكرية جديدة مستوحاة من معادلة فيثاغورس. خُصِّص هذا الكتاب الذي يحتوي على 13 جزءا، لحل المسائل ويَشْمَلُ 189 مسألة تعتمد في حلها على المعادلات الحدودية من الدرجة الأولى والثانية، وقد حضي هذا الكتاب باهتمام الرياضيين العرب ك أبي الوفى، وقد كان Diophante يعتبر كل معادلة حلولها لا جدرية كمعادلة متناقضة عكس Archimède(-287,-212) و Héron d'Alexandrie الذي كانا يقبلان الحلول اللاجدرية ويكتفيان بتقديم قيم تقريبية لها.
فيرما والنقطة التي أفاضت الكأس:
ينحدر (1601-1665) Pierre de Fermat الذي ازداد في 17 غشت 1601 من عائلة برجوازية، تابع دراسته الأساسية بمدينة Toulouse ، ثم دراسته القانونية بمدينة Orléans . تقلد عدة مناصب هامة لها علاقة بتكوينه القانوني ، والسبب في تسلقه هذه المناصب ليس لكونه نابغة في القانون بل بسبب اهتماماته العلمية في مجال الرياضيات والفزياء، حيث كان يعتبر عبقري عصره . لم يكن Fermat رياضيا محترفا، بل كان هاويا يمارس الرياضيات بشغف في أوقات فراغه. لم يكن Fermat يُدَوِّن أبحاثه بل كان يفضل اقتسام ما توصل اليه مع علماء عصره مثل Galilée (1564 ; 1642) وDescartes (1596 ; 1650) و Pascal (1623 ; 1662) و Mersenne (1588 ; 1648).
قام Fermat بأعمال هامة في مجال الرياضيات، حيث قارب مفهوم الاشتقاق لتحديد القيم القصوية والدنوية للدوال الحدودية وطور طرائق لحساب التكامل قريبة من الطرائق المستعملة حاليا. وقد تبادل كل من Fermat و Pascal مراسلات أدت الى عرض نظرية جديدة وهي " حساب الاحتمالات" calculs de probabilités ونشرت نتائج البحث التي توصلوا إليها سنة 1675 في كتاب للرياضي Christiaan Huygens (1629 ; 1695).
غير أن ما كان يشغل Fermat بالخصوص هي رياضيات ما قبل التاريخ وقد كتب كما أشرنا سابقا عبارته المشهورة على هامش صفحة من كتاب Diophante (207 - 291) والتي يقول فيها أنه توصل الى برهان رائع يثبت فيه أن كل معادلة على شكل (xn+ yn = zn ; n2 ) لا تقبل أي حل صحيح غيرمنعدم. والمثير في الأمر أن هذا البرهان المزعوم لم يُعْثَر له على أي أثر. هناك احتمال أن يكون البرهان مجرد فكرة تراءت ل Fermant دون أن يكتبها، وحتى إن كانت فكرة البرهان موجودة في عقل Fermat ، فإنها ستعتمد بالأساس على خاصيات عادية للحقائق الرياضية المعروفة في زمن Fermat ، إلا أن الغريب في الأمر هو، كما قلنا سابقا، فإن الرياضيين بمستوياتهم المختلفة، فشلوا في إيجاد برهان يستخدم الخاصيات العادية المعروفة، لإثبات المبرهنة أو دَحْضِها، أضف الى ذلك أن Fermat نفسه برهن على الخاصية في الحالة n=4 ، ومن هنا نستنتج أنه لو كان البرهان العام موجودا فلمذا يبحث Fermat عن برهان لحلات خاصة ، اللهم إلا إذا كان هذا البرهان سابقا على البرهان العام المحتمل.
ما بعد فيرما :
لم يتم العثور عند Fermat إلا على البرهان الخاص بالحالة n=4 الذي أنجز حوالي 1637 ، وقد جاءت براهين لحالات خاصة أخرى بعد مدد طويلة وهي على التوالي ، حالة n=3 سنة 1753 برهن عليها Euler(1707,1783) ، حالة n=5 سنة 1825 برهن عليها Dirichlet (1805-1859) و Legendre (1752-1833) ، حالة n=7 سنة 1839 برهن عليها Lamé (1795-1870) و آخرون ... أما الحالة n=6 لم تتم البرهنة عليها لأنها مجرد استنتاج من الحالة 3 . وقد تبين بعد ذلك أنه يكفي البرهنة على الخاصية في حالة n عدد أولي من أجل تعميمها ... هكذا توالت محاولات البرهنة على الخاصية من طرف رياضيين آخرين لكن دون أن يتمكن أي أحد منهم للبرهنة عليها بصفة عامة. لكن الأهم بالنسبة للرياضيين وبالخصوص Kummer (1810-1893) هو أنهم فتحوا فروع جديدة للبحث في مجال الجبر ونظرية الأعداد أملا في الوصول الى البرهان المنشود.
بعد ما يقارب 350 سنة من العمل المضني الذي لم يؤدي إلا الى نتائج جزئية، تمت أخيرا البرهنة على خاصية Fermat من طرف Andrew Wiles كما أسلفنا ، هذا الأخير الذي اعتكف، بسرية ،على العمل المكثف لمدة ثمان سنوات. نُشِر البرهان الذي يتضمن 200 صفحة، بشكله النهائي سنة 1995 ، واعتمد وسائل قوية في نظرية الأعداد. واستعملت فيه أفكار جديدة ومعقدة وتمت الاستعانة بآخر ما وصلت اليه التكنلوجيا الرقمية ، حيث أن عددا قليلا جدا من الأشخاص في العالم فقط، هم الذين يستطيعون متابعة البرهان في تفاصيله.
Ref1 : https://perso.univ-rennes1.fr/matthieu.romagny/exposes/conference_fermat.pdf
Ref2 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/pythagore
Ref3 : https://fr.wikipedia.org/wiki/Loi_des_cosinus
Ref4 : http://www.math93.com/index.php/histoire-des-maths/notions-et-theoremes/les-developpements/408-theoreme-d-al-kashi
Ref5 : https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Pythagore
Ref6 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/diophante
Ref7 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/fermat
Ref8 : https://fr.wikipedia.org/wiki/Dernier_th%C3%A9or%C3%A8me_de_Fermat
*مفتش ممتاز لمادة الرياضيات سابقا
[email protected]


انقر هنا لقراءة الخبر من مصدره.