محكمة استئناف أمريكية تعلق الإجراءات ضد ترامب في قضية حجب وثائق سرية    حرب إسرائيل على حزب الله كبدت لبنان 5 مليارات دولار من الخسائر الاقتصادية    الحكومة المغربية تعزز قطاع الدفاع الوطني بإعفاءات ضريبية جديدة    مجلس النواب يصادق بالأغلبية على الجزء الأول من مشروع قانون المالية لسنة 2025    غسل الأموال وتمويل الإرهاب… وزارة الداخلية تضع الكازينوهات تحت المجهر    "الأمم المتحدة" و"هيومن رايتس ووتش": إسرائيل ارتكبت جرائم حرب ضد الإنسانية وجرائم تطهير عرقي    الركراكي: المباراة أمام الغابون ستكون "مفتوحة وهجومية"        مصرع 10 أشخاص بحريق في دار مسنين بإسبانيا    جدعون ليفي يكتب: مع تسلم ترامب ووزرائه الحكم ستحصل إسرائيل على إذن بالقتل والتطهير والترحيل    اكادير تحتضن كأس محمد السادس الدولية للجيت سكي    صحيفة إيطالية: المغرب فرض نفسه كفاعل رئيسي في إفريقيا بفضل "موثوقيته" و"تأثيره"    عامل إقليم الجديدة يزور جماعة أزمور للاطلاع على الملفات العالقة    بوريطة: المغرب شريك استراتيجي لأوروبا .. والموقف ثابت من قضية فلسطين    مثل الهواتف والتلفزيونات.. المقلاة الهوائية "جاسوس" بالمنزل    المنتخب المغربي يفوز على نظيره المصري في التصفيات المؤهلة لكأس أمام أفريقيا للشباب    إقصائيات كأس أمم إفريقيا 2025 (الجولة 5).. الغابون تحسم التأهل قبل مواجهة المغرب    اشتباكات بين الجمهور الفرنسي والاسرائيلي في مدرجات ملعب فرنسا الدولي أثناء مباراة المنتخبين    السفيرة بنيعيش: المغرب عبأ جهازا لوجستيا مهما تضامنا مع الشعب الإسباني على خلفية الفيضانات    الحسيمة : ملتقي المقاولة يناقش الانتقال الرقمي والسياحة المستدامة (الفيديو)    تعيين مدير جديد للمدرسة الوطنية للهندسة المعمارية بتطوان    مقاييس التساقطات المطرية خلال 24 ساعة.. وتوقع هبات رياح قوية مع تطاير للغبار    بحضور التازي وشلبي ومورو.. إطلاق مشاريع تنموية واعدة بإقليم وزان    عنصر غذائي هام لتحسين مقاومة الأنسولين .. تعرف عليه!    وزيرة الاقتصاد والمالية تقول إن الحكومة واجهت عدة أزمات بعمل استباقي خفف من وطأة غلاء الأسعار    لمدة 10 سنوات... المغرب يسعى لتوريد 7.5 ملايين طن من الكبريت من قطر    الدرك الملكي بتارجيست يضبط سيارة محملة ب130 كيلوغرامًا من مخدر الشيرا    المنتخب المغربي الأولمبي يواجه كوت ديفوار وديا في أبيدجان استعدادا للاستحقاقات المقبلة    أزمة انقطاع الأدوية تثير تساؤلات حول السياسات الصحية بالمغرب    هل يستغني "الفيفا" عن تقنية "الفار" قريباً؟    بتهمة اختلاس أموال البرلمان الأوروبي.. مارين لوبان تواجه عقوبة السجن في فرنسا    ‬المنافسة ‬وضيق ‬التنفس ‬الديموقراطي    الارتفاع ينهي تداولات بورصة الدار البيضاء    حوالي 5 مليون مغربي مصابون بالسكري أو في مرحلة ما قبل الإصابة    ألغاز وظواهر في معرض هاروان ريد ببروكسيل    الحكومة تعلن استيراد 20 ألف طن من اللحوم الحمراء المجمدة    صيدليات المغرب تكشف عن السكري    ملتقى الزجل والفنون التراثية يحتفي بالتراث المغربي بطنجة    الروائي والمسرحي عبد الإله السماع في إصدار جديد    خلال 24 ساعة .. هذه كمية التساقطات المسجلة بجهة طنجة    الإعلان عن العروض المنتقاة للمشاركة في المسابقة الرسمية للمهرجان الوطني للمسرح    نشرة إنذارية.. هبات رياح قوية مع تطاير للغبار مرتقبة اليوم الخميس وغدا الجمعة بعدد من أقاليم المملكة    معدل الإصابة بمرض السكري تضاعف خلال السنوات الثلاثين الماضية (دراسة)    تمديد آجال إيداع ملفات الترشيح للاستفادة من دعم الجولات المسرحية    مركز إفريقي يوصي باعتماد "بي سي آر" مغربي الصنع للكشف عن جدري القردة    الاحتيال وسوء استخدام السلطة يقودان رئيس اتحاد الكرة في جنوب إفريقا للاعتقال    عواصف جديدة في إسبانيا تتسبب في إغلاق المدارس وتعليق رحلات القطارات بعد فيضانات مدمرة    "هيومن رايتس ووتش": التهجير القسري الممنهج بغزة يرقي لتطهير عرقي    حفل توزيع جوائز صنّاع الترفيه "JOY AWARDS" يستعد للإحتفاء بنجوم السينماوالموسيقى والرياضة من قلب الرياض    أسعار النفط تنخفض بضغط من توقعات ارتفاع الإنتاج وضعف الطلب    هذه أسعار أهم العملات الأجنبية مقابل الدرهم    أكاديمية المملكة تفكر في تحسين "الترجمة الآلية" بالخبرات البشرية والتقنية    الناقد المغربي عبدالله الشيخ يفوز بجائزة الشارقة للبحث النقدي التشكيلي    غياب علماء الدين عن النقاش العمومي.. سكنفل: علماء الأمة ليسوا مثيرين للفتنة ولا ساكتين عن الحق    جرافات الهدم تطال مقابر أسرة محمد علي باشا في مصر القديمة    سطات تفقد العلامة أحمد كثير أحد مراجعها في العلوم القانونية    كيفية صلاة الشفع والوتر .. حكمها وفضلها وعدد ركعاتها    مختارات من ديوان «أوتار البصيرة»    







شكرا على الإبلاغ!
سيتم حجب هذه الصورة تلقائيا عندما يتم الإبلاغ عنها من طرف عدة أشخاص.



ما قبل "فيثاغورس" ومابعد "فيرما" ..
نشر في هسبريس يوم 16 - 08 - 2016


قصة عايشت جميع مراحل الفكر الرياضي
مقدمة :
ربما تكون الصدفة وحدها هي التي قادت الى اكتشاف ما دَوّنَه (1601-1665) Pierre de Fermat رجل القانون الفرنسي (Toulouse) سنة 1637، على هامش إحدى صفحات كتاب للرياضيات مُدَوَّن باللاثينية Les Arithmétiques ، التي كان يتحدث فيها مؤلفه Diophante (207 - 291) عن كيفية تحديد أطوال صحيحة طبيعية لمثلث قائم الزاوية، أي كيفية إيجاد حلول صحيحة طبيعية لمعادلة Pythagore(-569, -494) المشهورة x2+ y2 = z2 ، حيث كتب Fermat ما يلي: "المكعب ليس بجموع مكعبين، قوة رابعة ليست مجموع قوتين رابعتين، وبشكل عام كل قوة أكبر من اثنين ليست مجموع قوتين مماثلتين لها. لقد عثرت على برهان رائع لهذه المبرهنة، إلا أن كتابته غير ممكنة حيث أن هذا الهامش ضيق جدا ولا يسمح بذلك ". من هنا يتبين أن Fermat كان منشغلا بمحاولة تعميم معادلة Pythagore الى الدرجات الأخرى (xn+ yn = zn ; n2 ) وصرح في نفس الوقت أن هذه المعادلات الناتجة عن التعميم لا تقبل أي حلول صحيحة غير منعدمة ، عكس معادلة Pythagore .
لقد شكل هذا الحدث لحظة فارقة في تاريخ الرياضيات. من جهة فإنه يعتبرنقطة تحول بالنسبة لمبرهنة فيثاغورس التي ستعرف تطورا جديدا وغير مسبوق، بعد كل التطورات التي عرفتها منذ حضارة ما بين النهرين الى الحضارة المصرية ثم الإغريقية ، ومن جهة أخرى فإن هذا الحدث خلق حالة اسْتِنْفَاروحَيْرَة شديدة في صفوف الرياضيين بمستوياتهم المختلفة، وذلك لفشلهم في إيجاد برهان يثبت مبرهنة Fermat أو مثال مضاد يَدْحَضُها، ولم تنتهي هذه الأزمة إلا سنة 1995 مع تقديم البرهان النهائي لمبرهنة Fermat ، باستعمال وسائل العصر المتطورة جدا ( الكومبيوتر)، من طرف الرياضي الأنجليزي Andrew Wiles (1953- ) .
ما قبل فيثاغورس :
تتعلق مبرهنة Pythagore أساسا بالمثلث القائم الزاوية، في بعدها الهندسي " في كل مثلث قائم الزاوية، مربع الوتر يساوي مجموع مربعي الضلعين المُكَوِّنين للزاوية القائمة والعكس صحيح " ، أما بُعْدُهَا الجبري فيظهر في اعتبار المعادلة x2+ y2 = z2 والبحث عن حلول صحيحة أو جدرية لها، وهذه مسألة جد عادية في زمان Pythagore أو قبله لأن الأعداد اللاجدرية لم تكن معروفة آنذاك، وربما استمر الوضع هكذا الى عهد Diophante (207 - 291) الاسكندراني الذي خصص للمعادلات ذات الصيغة الحدودية التي معاملاتها أعداد صحيحة وحلولها المطلوبة أعداد صحيحة طبيعية أو كسرية، حيزا هاما في كتابه Les Arithmétiques حتى سميت باسمه Equations de Diophante.
الحقيقة أن مبرهنة فيثاغورس التي لا زال معهد La Columbia Institut يحافظ على اللوحة الطينية التي كتبت عليها، كانت معروفة في حالات خاصة لدى الصينيين والبابليين 1000 عام قبل فيثاغورس ، وكان المصريون يعرفون المبرهنة في أبسط حالاتها، حيث كانوا يستعملون حبلا به 13 عقدة وبمجرد تكوين مثلث طول أضلاعه على التوالي 3 ، 4 ، 5 بواسطة هذا الحبل يحصلون على مثلث قائم الزاوية وبالتالي على الزاوية القائمة. وقد استعملت فكرة الحبل هاته بعد ذلك من طرف عمال البناء للتأكد من أن الحائط عموديا . وكل ما قام به الفيثاغوريون هو تعميم الخاصية على جميع المثلثات القائمة الزاوية .
بين فيثاغورس و فيرما :
أول برهان معروف لمبرهنة فيثاغورس جاء ضمن كتاب "Les Eléments" لأقليدس الأسكندراني Euclide d'Alexandrie (-320 ; -260) أي بعد أكثر من قرنين على اكتشافها من طرف المدرسة الفيثاغورية، مما يُبْعِد احتمال أن يكون هذا البرهان من ابتكار هذه المدرسة .
من جهة أخرى فقد لعب كتاب Les Arithmétiques للرياضي Diophante (207 - 291) دورا هاما في انطلاق مغامرات فكرية جديدة مستوحاة من معادلة فيثاغورس. خُصِّص هذا الكتاب الذي يحتوي على 13 جزءا، لحل المسائل ويَشْمَلُ 189 مسألة تعتمد في حلها على المعادلات الحدودية من الدرجة الأولى والثانية، وقد حضي هذا الكتاب باهتمام الرياضيين العرب ك أبي الوفى، وقد كان Diophante يعتبر كل معادلة حلولها لا جدرية كمعادلة متناقضة عكس Archimède(-287,-212) و Héron d'Alexandrie الذي كانا يقبلان الحلول اللاجدرية ويكتفيان بتقديم قيم تقريبية لها.
فيرما والنقطة التي أفاضت الكأس:
ينحدر (1601-1665) Pierre de Fermat الذي ازداد في 17 غشت 1601 من عائلة برجوازية، تابع دراسته الأساسية بمدينة Toulouse ، ثم دراسته القانونية بمدينة Orléans . تقلد عدة مناصب هامة لها علاقة بتكوينه القانوني ، والسبب في تسلقه هذه المناصب ليس لكونه نابغة في القانون بل بسبب اهتماماته العلمية في مجال الرياضيات والفزياء، حيث كان يعتبر عبقري عصره . لم يكن Fermat رياضيا محترفا، بل كان هاويا يمارس الرياضيات بشغف في أوقات فراغه. لم يكن Fermat يُدَوِّن أبحاثه بل كان يفضل اقتسام ما توصل اليه مع علماء عصره مثل Galilée (1564 ; 1642) وDescartes (1596 ; 1650) و Pascal (1623 ; 1662) و Mersenne (1588 ; 1648).
قام Fermat بأعمال هامة في مجال الرياضيات، حيث قارب مفهوم الاشتقاق لتحديد القيم القصوية والدنوية للدوال الحدودية وطور طرائق لحساب التكامل قريبة من الطرائق المستعملة حاليا. وقد تبادل كل من Fermat و Pascal مراسلات أدت الى عرض نظرية جديدة وهي " حساب الاحتمالات" calculs de probabilités ونشرت نتائج البحث التي توصلوا إليها سنة 1675 في كتاب للرياضي Christiaan Huygens (1629 ; 1695).
غير أن ما كان يشغل Fermat بالخصوص هي رياضيات ما قبل التاريخ وقد كتب كما أشرنا سابقا عبارته المشهورة على هامش صفحة من كتاب Diophante (207 - 291) والتي يقول فيها أنه توصل الى برهان رائع يثبت فيه أن كل معادلة على شكل (xn+ yn = zn ; n2 ) لا تقبل أي حل صحيح غيرمنعدم. والمثير في الأمر أن هذا البرهان المزعوم لم يُعْثَر له على أي أثر. هناك احتمال أن يكون البرهان مجرد فكرة تراءت ل Fermant دون أن يكتبها، وحتى إن كانت فكرة البرهان موجودة في عقل Fermat ، فإنها ستعتمد بالأساس على خاصيات عادية للحقائق الرياضية المعروفة في زمن Fermat ، إلا أن الغريب في الأمر هو، كما قلنا سابقا، فإن الرياضيين بمستوياتهم المختلفة، فشلوا في إيجاد برهان يستخدم الخاصيات العادية المعروفة، لإثبات المبرهنة أو دَحْضِها، أضف الى ذلك أن Fermat نفسه برهن على الخاصية في الحالة n=4 ، ومن هنا نستنتج أنه لو كان البرهان العام موجودا فلمذا يبحث Fermat عن برهان لحلات خاصة ، اللهم إلا إذا كان هذا البرهان سابقا على البرهان العام المحتمل.
ما بعد فيرما :
لم يتم العثور عند Fermat إلا على البرهان الخاص بالحالة n=4 الذي أنجز حوالي 1637 ، وقد جاءت براهين لحالات خاصة أخرى بعد مدد طويلة وهي على التوالي ، حالة n=3 سنة 1753 برهن عليها Euler(1707,1783) ، حالة n=5 سنة 1825 برهن عليها Dirichlet (1805-1859) و Legendre (1752-1833) ، حالة n=7 سنة 1839 برهن عليها Lamé (1795-1870) و آخرون ... أما الحالة n=6 لم تتم البرهنة عليها لأنها مجرد استنتاج من الحالة 3 . وقد تبين بعد ذلك أنه يكفي البرهنة على الخاصية في حالة n عدد أولي من أجل تعميمها ... هكذا توالت محاولات البرهنة على الخاصية من طرف رياضيين آخرين لكن دون أن يتمكن أي أحد منهم للبرهنة عليها بصفة عامة. لكن الأهم بالنسبة للرياضيين وبالخصوص Kummer (1810-1893) هو أنهم فتحوا فروع جديدة للبحث في مجال الجبر ونظرية الأعداد أملا في الوصول الى البرهان المنشود.
بعد ما يقارب 350 سنة من العمل المضني الذي لم يؤدي إلا الى نتائج جزئية، تمت أخيرا البرهنة على خاصية Fermat من طرف Andrew Wiles كما أسلفنا ، هذا الأخير الذي اعتكف، بسرية ،على العمل المكثف لمدة ثمان سنوات. نُشِر البرهان الذي يتضمن 200 صفحة، بشكله النهائي سنة 1995 ، واعتمد وسائل قوية في نظرية الأعداد. واستعملت فيه أفكار جديدة ومعقدة وتمت الاستعانة بآخر ما وصلت اليه التكنلوجيا الرقمية ، حيث أن عددا قليلا جدا من الأشخاص في العالم فقط، هم الذين يستطيعون متابعة البرهان في تفاصيله.
Ref1 : https://perso.univ-rennes1.fr/matthieu.romagny/exposes/conference_fermat.pdf
Ref2 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/pythagore
Ref3 : https://fr.wikipedia.org/wiki/Loi_des_cosinus
Ref4 : http://www.math93.com/index.php/histoire-des-maths/notions-et-theoremes/les-developpements/408-theoreme-d-al-kashi
Ref5 : https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Pythagore
Ref6 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/diophante
Ref7 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/fermat
Ref8 : https://fr.wikipedia.org/wiki/Dernier_th%C3%A9or%C3%A8me_de_Fermat
*مفتش ممتاز لمادة الرياضيات سابقا
[email protected]


انقر هنا لقراءة الخبر من مصدره.